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• Although prevalence of both AD and PD is increasing rapidly, treatment options 
are limited, highlighting the need for additional therapies1,2

• HGF, through its receptor MET, activates neuroprotective pathways, enhancing 
neurite outgrowth and survival of a variety of neurons, including cortical and 
dopaminergic neurons that degenerate in AD and PD, respectively3  

• Fosgonimeton is a small-molecule positive modulator of the HGF/MET pathway 
that has shown promising neuroprotective and neurotrophic effects in preclinical 
studies that model AD and PD4

 – Clinical trials of fosgonimeton are currently enrolling people with AD5,6 

Figure 1. Fosgonimeton positively modulates the 
neuroprotective and neurotrophic HGF/MET pathway
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Fosgonimeton is converted in the blood to fosgo-AM, the active metabolite that crosses the blood-brain barrier  
and promotes HGF/MET-driven neurotrophic and neuroprotective signaling cascades in the brain. 

OBJECTIVE

To evaluate the neuroprotective effects of fosgo-AM  
in cell culture models that capture components of 

neurodegeneration associated with AD and PD, including 
β-amyloid toxicity, p-Tau, α-syn aggregation, mitochondrial 

dysfunction, oxidative stress, and neuronal loss 

METHODS

Figure 2. Experimental timeline
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Primary cortical or dopaminergic neurons were treated with fosgo-AM and then subjected to various toxic 
injuries. Afterward, fosgo-AM treatment was reapplied for 24 hours. For Aβ1-42 and glutamate assays, culture 
medium was supplemented with HGF 0.05 ng/mL. 

• The cortex or midbrain of each rat embryo was dissected at day E15, promptly 
placed in cold medium, and further dissected to isolate the appropriate brain region 

• After injury, cells were fixed with 4% PFA, immunolabeled, imaged using ImageXpress 
(Molecular Devices), and analyzed using MetaXpress (Molecular Devices) 

AD models

Figure 3. Fosgo-AM improves survival of cortical neurons and reduces 
tau hyperphosphorylation after exposure to Aβ1-42 or glutamate
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(A) Representative images from control primary cortical neuron cultures (left), cultures incubated with Aβ1-42 after treatment with 
negative vehicle control (center), and cultures incubated with Aβ1-42 after treatment with fosgo-AM (100 nM; right). Cultures were 
immunostained for MAP-2 (marker of neurons) and AT100 (marker for p-Tau). (B) Primary cortical neuron cultures that were pretreated 
with fosgo-AM had significantly higher numbers of neurons, longer neurite networks, and reduced p-Tau when subjected to Aβ1-42 
(Fisher’s LSD vs Aβ control [n = 5 or 6]). (C) Representative images from control cultures (left), cultures incubated with glutamate after 
treatment with negative vehicle control (center), and cultures incubated with glutamate after treatment with fosgo-AM (100 nM; right). 
Cultures were immunostained for MAP-2 and AT100. (D) Fosgo-AM (100 nM) significantly protected primary cortical neurons against 
injury with glutamate (Fisher’s LSD vs glutamate control [n = 5 or 6]). Culture medium was supplemented with HGF 0.05 ng/mL.  
Scale bar: (A) and (C) 100 μm (all panels).

**p < 0.01; ****p < 0.0001.

PD models

Figure 4. Fosgo-AM improves survival of dopaminergic neurons  
and reduces α-syn aggregation in cell culture models of PD
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(A) Representative images from control primary dopaminergic neuron cultures (left), cultures incubated with rotenone after treatment 
with negative vehicle control (center), and cultures incubated with rotenone after treatment with fosgo-AM (1 μM; right). Cultures were 
immunostained with antibodies against TH (marker of dopaminergic neurons) and α-syn (marker of PD-associated protein aggregates). 
(B) Primary dopaminergic neuron cultures that were pretreated with fosgo-AM had significantly higher numbers of neurons (left), longer 
neurite networks (center), and reduced α-syn aggregation (right) when subjected to rotenone (Fisher’s LSD vs rotenone control  
[n = 5 or 6]). (C) Representative images from control primary dopaminergic neuron cultures (left), cultures incubated with 6-OHDA after 
treatment with negative vehicle control (middle), and cultures incubated with 6-OHDA after treatment with fosgo-AM (100 nM; right). 
Cultures were immunostained with TH and α-syn. (D) Fosgo-AM (100 nM) significantly protected primary dopaminergic neurons against 
injury with 6-OHDA (Fisher’s LSD vs 6-OHDA control [n = 4-6]). Scale bar: (A) and (C) 100 μm (all panels).

**p < 0.01; ***p < 0.001; ****p < 0.0001.

INTRODUCTION RESULTS

CONCLUSIONS

1
Treatment with fosgo-AM significantly improved cortical 
neuron survival, protected neurite networks, and reduced 
p-Tau accumulation during injury with Aβ1-42 or glutamate

2
In dopaminergic neurons treated with fosgo-AM, there was 
a significant improvement in neuron survival, protection of 
neurite networks, and reduction of α-syn aggregation after 
injury with 6-OHDA or rotenone

3
These results show the potential of fosgonimeton to 
mitigate neuronal damage and protein pathology induced 
by mechanisms central to AD and PD

KEY TAKEAWAY
The broad neuroprotective effects of fosgonimeton  

(through fosgo-AM), in addition to its neurotrophic activity, highlight 
its ability to address multiple modes of neurodegeneration and its 

potential as a clinical candidate for AD and PD
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